Week 1 MATH 34B

TA: Jerry Luo

jerryluo8@math.ucsb.edu

Website: math.ucsb.edu/~jerryluo8

Office Hours: Wednesdays 2-3PM, South Hall 6431X; Math Lab hours: Wednesday 3-5PM, South Hall 1607

1.5 Solve for x: $\frac{x+4}{8x-1} = \frac{x+8}{8x-7}$

$$(x+4)(8x-7) = (x+8)(8x-1)_{-}$$

$$1x^{2} + 32x - 7x - 28 = 8x^{2} + 64x - x - 8$$

$$25x - 28 = 63x - 8$$

$$-20 = 38x$$

$$x = -\frac{20}{38}$$

1.10 What is the equation of the line going through the two points (2,8) and (3,2)?

$$y=y_1=m(x-x_1)$$
 To find m: $m=\frac{y_2-y_1}{x_2-x_1}=\frac{8-2}{2-3}=-6$.
 $y-8=-6(x-2)$
 $=>y=-6x+20$.

1.12 The perimeter of a rectangle is 26cm. If the area of the rectangle is $40cm^2$ find the length and width of the rectangle (assume length is smaller than the width).

40 + W= 13

40 + w2 - 13w = 0

$$A = M_{W} = 1. W = 40 \Rightarrow 1 = \frac{40}{W}$$

$$w^{2}-13w+40=0$$
 y
 $(w-5)(w-8)=0$

$$\frac{1}{16} = \frac{1}{2.2} = \frac{1}{10} = \frac{1}{10}$$

$$\int_{1}^{q} 2 dx = 2x/_{1}^{q} = 2a - 2$$

$$2a-2=12 = 3 \alpha = 7$$

2.8 Maximize: $f(x) = 1 + 4x - x^2$.

$$f'(x) = 4 - 2x$$

 $f'(x) = 0 \Rightarrow 4 - 2x = 0 \Rightarrow 4 - 2x \Rightarrow x = 2$,
To see may at $x = 2$, notice $f''(x) = -2 < 0$.
So, $f(z) = 1 + 4(z) - (z)^2 = 5$ is max

2.9 Where is $f(x) = x^2 - 5x$ increasing?

$$f(x) = 2x-5$$

$$f increasing (=) f(x) > 0.$$

$$f(x) = 2x-5$$

$$f(x) > 0.$$

$$f(x) = 2x-5$$

$$f(x) > 0.$$

$$f(x)$$

2.10 Find the second derivative of $8x^3 + 2x$.

$$f'(x) = 3.8x^{2} + 2$$

= $24x^{2} + 2$
 $f''(x) = 48x$

2.13 The total number of people at a football game was 5600. Field-side tickets were 40 dollars and end-zone tickets were 20 dollars. If the total amount of money received for the tickets was 186000 how many of each kind of ticket were sold.

Let
$$a = field side tickets$$
, $b = and-zon tickets$, $a + b = 5600$. $= 5600 - a$.

40 $a + 20b = 186000$.

40 $a + 70(5600 - a) = 186000$
 $\Rightarrow a = 3700$
 $\Rightarrow a = 1900$